Ядерная энергетика Курсовой проект по дисциплине "Детали машин" Сопромат Лекции по физике Начертательная геометрия Черчение Контрольная по математике Дизайн квартир Арт-дизайн Русская культура Мировая культура

Математический анализ

Множества. Операции над множествами

В математике первичными понятиями являются понятия множества и элемента множества. Множества обозначают большими латинскими буквами A, B, ..., а их элементы – малыми a, b, ... Если элемент a принадлежит множеству A, то пишут aÎA. В противном случае пишут aÏA.

Множество, не содержащее ни одного элемента, называется пустым и обозначается Æ.

Множество A называется подмножеством множества B, если любой элемент множества A является элементом множества B. Пишут AÌB или BÉA и говорят, что множество A включено во множество B или B включает A.

Множества A и B называются равными, если они состоят из одних и тех же элементов. Записывают это так: A=B.

Математический анализ – совокупность разделов математики, посвящённых исследованию функций методами дифференциального и интегрального исчислений

Для любого множества A (непустого или пустого) полагается AÈÆ=A.

Логические символы В математических рассуждениях часто встречаются выражения «существует элемент», обладающий некоторыми свойствами, и «любой элемент» среди элементов, имеющих некоторое свойство. Вместо слова «существует» или равносильного ему слова «найдётся» иногда пишут символ $, т. е. перевернутую латинскую букву E (от англ. Existence существование), а вместо слов «любой», «каждый», «всякий» – символ ", т. е. перевернутое латинское A (от англ. аny любой). Символ $ называется символом существования, а символ " – символом всеобщности.

Свойство непрерывности действительных чисел связано с самым простейшим использованием математики на практике – с измерением величин. При измерении какой-либо физической или какой-нибудь другой природы величины часто получают с большей или меньшей точностью её приближённые значения

Числовые множестваю Мощность множеств Расширенная числовая прямая Известно что между множеством действительных чисел и множеством точек числовой прямой существует взаимнооднозначное соответствие. Часто бывает удобно дополнить эти множества элементами, обозначаемыми через +¥ и –¥ и называемыми соответственно плюс и минус бесконечностями

Промежутки действительных чисел

Конечные и бесконечные множества. Эквивалентные множества. Мощность Рассматривая различные множества, мы замечаем, что иногда можно, если не фактически, то хотя бы примерно, указать число элементов в данном множестве. Таковы, например, множество всех вершин некоторого многогранника, множество всех простых чисел, не превосходящих данного числа, и т. д.

Примеры. Множества точек на любых двух отрезках [a, b] и [c, d] эквивалентны между собой. Предел функции Справочный материал и примеры к выполнению контрольной работы по математике

Теорема Кантора Можно доказать, что из всех бесконечных множеств счётные множества имеют наименьшую мощность, если только существуют бесконечные множества, неэквивалентные счётному. Такие множества называются несчётными, их существование следует из теоремы Кантора.

Верхняя и нижняя грани множества Ограниченные и неограниченные множества Введём ряд нужных в дальнейшем понятий и изучим некоторые свойства числовых множеств.

Рассмотрим произвольное множество XÌ¡.

Последовательность. Предел последовательности Пусть X – какое-либо множество и ¥ – множество натуральных чисел. Если каждому элементу множества ¥ поставлен в соответствие единственный вполне определённый элемент множества X, то говорят, что задана последовательность.

Бесконечно малые и бесконечно большие последовательности Последовательность, имеющая своим пределом нуль, называется бесконечно малой.

Теорема о единственности предела последовательности

Свойство пределов последовательностей

Теорема. Если последовательности xn, yn имеют конечные пределы: , то их произведение также имеет конечный предел, причём .

Неопределённые выражения Выше были оставлены без рассмотрения случаи, когда пределы переменных xn, yn (один или оба) бесконечны или, если речь идет о частном, когда предел знаменателя равен нулю. Из этих случаев мы здесь остановимся лишь на четырёх, представляющих некоторую важную и интересную особенность.

Предел монотонной ограниченной последовательности Переходим к изучению вопроса о том, какими свойствами должна обладать последовательность, чтобы у неё существовал предел. Прежде чем сформулировать окончательный ответ, рассмотрим один простой и важный класс последовательностей, для которых этот вопрос решается легко.

Лемма . Пусть даны монотонно возрастающая последовательность xn и монотонно убывающая последовательность yn, причём всегда

Критерий сходимости Больцано–Коши Общий критерий сходимости последовательности принадлежит чешскому математику Больцано и французскому математику Коши. Для его формулировки нам понадобится следующее понятие.

Отсюда следует, что любая фундаментальная последовательность, начиная с некоторого номера, становится ограниченной.

Число «e»

Определение подпоследовательности Рассмотрим теперь, наряду с последовательностью xn, какую-либо извлечённую из нее частичную последовательность (или подпоследовательность)

Теорема (Больцано–Вейерштрасса). Из любой ограниченной последовательности xn всегда можно извлечь такую подпоследовательность, которая сходилась бы к конечному пределу.

Наибольший и наименьший пределы Итак, для любой последовательности xn, будь она ограничена или нет, существуют частичные пределы. Можно показать, что среди этих частичных пределов обязательно найдутся наибольший и наименьший; они называются наибольшим и наименьшим пределами самой последовательности xn

Включение AÌB не исключает равенства этих множеств. Если же AÌB, но A¹B и A¹Æ, то A называют собственным подмножеством множества B.

Если множество A включено во множество B или совпадает с ним, то пишут AÍB или BÊA.

Пример. Для числовых множеств имеют место следующие очевидные включения: N Ì Z Ì Q Ì R Ì C.

Множество называется конечным, если оно содержит конечное число элементов. Множество, не являющееся конечным, называется бесконечным.

Если заданы два множества A и B, то через AÈB обозначается множество, называемое их объединением или суммой и состоящее из всех тех элементов, каждый из которых принадлежит хотя бы одному из множеств A и B. Таким образом, если некоторый элемент принадлежит множеству AÈB, то он принадлежит либо только множеству A, либо только множеству B, либо обоим этим множествам одновременно.


На главную