Лекции по физике

Ядерная энергетика
Ядерный топливный цикл
Реактор"Феникс"
Оружейный уран и плутоний
Добыча урановой руды
Обогащение урана
Атомная бома «Малыш»
Радионуклиды
Транспортировка радиоактивных веществ
Твэлы энергетических реакторов
Радиохимические заводы России
Курсовой проект по дисциплине
"Детали машин"
Технические требования на чертеже
редуктора
Выбор параметров и расчёт цилиндрических
зубчатых передач
Расчёт зубьев червячного колеса на
выносливость
Пример выполнения курсового проекта
Расчет резьбовых соединений
Зубчатые передачи
Методы повышения износостойкости
деталей машин
Червячные передачи
В зацеплении Новикова
Повреждение поверхности зубьев
Проверочный расчет на выносливость
при изгибе
Приводные ремни и область их применения
Проектирование новой машины
Проектный расчет валов
Муфты продольно-разъемные
Классификация приводных муфт
Лекции по физике
Динамика твердого тела
Вынужденные колебания и волны
Основы термодинамики
Диэлектрики
Получение переменного тока
Оптика

Фотоэлектрический эффект

Вынужденные колебания и волны.

Уравнение вынужденных колебаний.

Вынужденными называются колебания, которые происходят под действием внешней периодической силы. В этом случае частота колебаний не определяется параметрами самой системы, а задается внешним источником. Для груза на пружине уравнение движения может быть получено формальным введением в уравнение ( 8-8) еще одной - внешней периодической силы F(t) = F0sin wt :

 + mg - k (x +x) + F0sin wt ; ( 9-1 )

 после преобразований и обозначений, аналогичных прошлой лекции, получим: 

 f0 sin wt,  ( 9-2 )

где f0 = Остальные обозначения сохраняют свой смысл. Т.к. груз колеблется с частотой вынуждающей силы, решение дифференциального уравнения ( 9-2 ) может быть записано в следующем виде: x(t) = A sin( wt + j). Появление фазового сдвига между колебаниями груза и внешним воздействием связано с определенной инерционностью системы, реагирующей на внешнее воздействие с некоторым опозданием. Однако, для упрощения последующих выкладок, удобнее изменить начало отсчета сдвига фаз: пусть колебания груза происходят по закону x(t)= =Asinwt, а внешняя сила получает некоторое опережение по фазе, т.е.f0 sin(wt -j) =

= f (t) или заменяя j на (- y) , f (t) = f0 sin(wt +y)

 Тогда неизвестной величиной в выражении x(t) = Asinwt остается только амплитуда колебаний. Для ее определения используем векторный способ решения уравнения (9-2). Вычислим последовательно первую и вторую производные от х(t) и

 подставим эти производные в ( 9-2):   =  ; ; после приведения подобных получим: 

2bwА f0

 

 

 

 y

 

  A(-w2) Рис.35. Графическое решение уравнения

 (9-3).

. ( 9-3 )

Вспоминая, что колебания можно представлять в векторном виде, рассмотрим уравнение ( 9-3 ) как векторное: два вектора, стоящие в его левой части в сумме дают вектор в правой части (см.рис.35). Из рисунка по теореме Пифагора следует: . Тогда

 , ( 9-4 )

и  . ( 9-5 )

Из найденного выражения для амплитуды вынужденных колебаний ( 9-4 ) видно, что величина А зависит от частоты вынуждающего воздействия. Для нахождения экстремального значения этой амплитуды найдем производную знаменателя и приравняем ее к нулю: 4(, откуда следует, что «экстремальное» или резонансное значение частоты определяется как:

   . ( 9-6 )

 А 

 А рез 

 

 

 

 2Dw

 

 w

 wрез 

 Рис.36. Резонансная кривая. 

Если частота внешнего воздействия может изменяться, то в тот момент, когда ее значение совпадает с wрез , знаменатель ( 9-4 ) становится минимальным, а амплитуда вынужденных колебаний достигает максимальной величины. На практике очень часто наблюдается, что колеблющаяся система обладает слабым затуханием и b << w0 . В этом случае wрез » w0 , т.е. значение резонансной частоты совпадает с собственной частотой системы. Явление возрастания амплитуды вынужденных колебаний до максимума, когда частота внешнего воздействия приближается к собственной частоте колебаний называется резонансом. Изменение амплитуды вынужденных колебаний в области частот,

Волны. Волной принято называть распространение в пространстве изменений какой-либо физической величины. Изменения величины могут носить как периодический, так и непериодический характер. Для того, чтобы эти изменения могли распространяться в некоторой области пространства, необходимо наличие некоторых условий; в частности, в каждой точке рассматриваемой области физическая величина должна иметь определенное значение ( принято говорить, что величина имеет полевой характер).

Элементы гидродинамики. Описание движения жидкости и газа. В отличие от материальных точек, когда для описания их движения задавались координаты этих точек, а затем определялись их скорости и ускорения, для описания движения жидкости применяется несколько иной метод. Развитие этого метода связано с практическими успехами гидро- и аэродинамики

Уравнение Бернулли и его следствия

 Кинетическая теория изучает свойства веществ, рассматривая их состоящими из атомов, которые находятся в непрерывном хаотическом движении. Огромное число отдельных объектов (атомов и молекул ) делает невозможным описание их состояния с точки зрения законов Ньютона. Поэтому в молекулярной физике используется статистический метод, когда для характеристики того или иного параметра вещества используются усредненные значения. 

Распределение энергии по степеням свободы

Изотермы Ван-дер-Ваальса. Реальные газы. Как уже отмечалось, поведение реальных газов хорошо описывается в модели идеального газа, когда расстояния между молекулами очень велики по сравнению с размерами самих молекул. Однако при больших степенях сжатия и при низких температурах становятся заметными отклонения в их поведении от уравнения Менделеева - Клапейрона

близких к резонансной - резонансная кривая - показана на рис.36. Чтобы оценить относительное изменение амплитуды при резонансе, необходимо знать величину амплитуды на двух частотах - на резонансной и на частоте, достаточно далекой от w рез. Рассматривая (9-4) нетрудно за- метить, что такой «далекой» частотой удобно выбрать w 0.В этом случае А0=. На резонансной частоте при условии, что b << w0 и w рез » w0 , амплитуда колебаний равна 

  , поэтому отношение выбранных амплитуд = Q, т.е. амплитуда при резонансе увеличивается в Q раз ( Q - добротность системы). При достаточно высокой добротности смещение отдельных частей системы может превышать пределы допустимых деформаций, что приведет к разрушению системы. Особенно опасны такие явления там, где разрушение колеблющейся системы может повлечь за собой гибель людей, - например, на механическом транспорте. Вращение винтов, валов с определенной частотой может вызвать резонансные колебания корпусов самолетов, судов и машин. Чтобы предотвратить подобные явления, конструктора вынуждены заранее тщательно рассчитывать как собственные частоты транспортных средств, так и возможные частоты, возникающие при различных режимах работы двигателей.

  Важной характеристикой резонансной кривой является так называемая ширина кривой. Шириной резонансной кривой называют область частот, близких к резонансной частоте, на которых относительное уменьшение «реакции» системы на внешнее воздействие не превышает 30% ( точнее в 1/ раза ) относительно

« реакции» на резонансной частоте (см. рис.36). Степень задаваемого ослабления носит субъективный характер и связана со слухом человека. Многочисленные измерения показали, что человек « на слух» различает громкости различных источников звука, если их амплитуды отличаются на 30%. Если громкости отличаются на меньшую величину, то человек воспринимает как одинаковые. Другими словами, все звуки при их резонансном усилении, лежащие в области ширины резонансной кривой, будут казаться человеку звуками с одинаковой громкостью. Это важно учитывать при конструировании и изготовлении музыкальных инструментов. 

На главную