Лекции по физике

Ядерная энергетика
Ядерный топливный цикл
Реактор"Феникс"
Оружейный уран и плутоний
Добыча урановой руды
Обогащение урана
Атомная бома «Малыш»
Радионуклиды
Транспортировка радиоактивных веществ
Твэлы энергетических реакторов
Радиохимические заводы России
Курсовой проект по дисциплине
"Детали машин"
Технические требования на чертеже
редуктора
Выбор параметров и расчёт цилиндрических
зубчатых передач
Расчёт зубьев червячного колеса на
выносливость
Пример выполнения курсового проекта
Расчет резьбовых соединений
Зубчатые передачи
Методы повышения износостойкости
деталей машин
Червячные передачи
В зацеплении Новикова
Повреждение поверхности зубьев
Проверочный расчет на выносливость
при изгибе
Приводные ремни и область их применения
Проектирование новой машины
Проектный расчет валов
Муфты продольно-разъемные
Классификация приводных муфт
Лекции по физике
Динамика твердого тела
Вынужденные колебания и волны
Основы термодинамики
Диэлектрики
Получение переменного тока
Оптика

Фотоэлектрический эффект

Электростатика

Мы приступаем к изучению электромагнитного взаимодействия. Это одно из четырех фундаментальных взаимодействий, которыми оперируют физики. Электромагнетизм - слово привычное студентам младших курсов. С электрическими и магнитными явлениями приходится сталкиваться в повседневной жизни. Мы не представляем себе нашу жизнь без электрического тока, радио, телевидения. Многие для зажигания газа пользуются пьезокерамическими зажигалками, автомобилисты хорошо знают, что без системы зажигания не будет работать двигатель внутреннего сгорания. Электрические рыбы известны человечеству с древних времен. Электромагнетизм как наука зародился в глубокой древности. Янтарь (по-гречески электрон) привлекал к себе внимание с весьма далеких времен. Он притягивал пылинки, кусочки папируса, нити. Другой полезный и таинственный камень - магнит тоже известен человечеству уже тысячи лет. Природные магниты - куски магнитного железняка - магнетита притягивали к себе железные предметы. Это нашло отражение в древних легендах и притчах. По Платону название магнит дано Эврипидом. Есть и другие версии происхождения этого названия. По притче Плиния название дано в честь сказочного пастуха волов Магниса, чья железная палка и гвозди сандалий прилипали к неведомым камням. Есть сведения, что слово «магнит» происходит от названия провинции Магнезия (сейчас Манисса). Об этом пишет Тит Лукреций Кар в поэме «О природе вещей». С тех пор человечество многое узнало об электромагнитных явлениях. И не просто узнало, а поставило очень большое число электромагнитных явлений себе на службу. Выяснилось, что именно электромагнетизм обеспечивает существование прекрасных кристаллов, с электромагнетизмом связаны, казалось бы совсем далекие от него, силы трения и упругости. Да и в организме человека широко проявляются электромагнитные явления. Так, наступив  на острый камешек, босой человек узнает об этом за счет разряда конденсатора, имеющегося в нервных волокнах и передачи электрического импульса, вызванного этим разрядом, в головной мозг. О многих электромагнитных проявлениях мы еще поговорим по ходу нашего курса, а пока приступим к его системному изложению.

Традиционно курс электромагнетизма начинается с изучения неподвижных электрических зарядов, как говорят, с электростатики. Мы так и поступим. И начнем с изучения свойств электрических зарядов, т.к. именно этим словом – заряд и описываются те свойства тел, которые позволяют им участвовать в электромагнитном взаимодействии.

ЭЛЕКТРОСТАТИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ В ВАКУУМЕ

Свойства электрических зарядов

Перечислим известные свойства электрических зарядов. В дальнейшем на многих из этих свойств мы остановимся подробнее.

1. Фундаментальным свойством электрического заряда является его существование в двух видах, которые с давних времен назвали положительными и отрицательными зарядами. Названия эти, разумеется, условные. Современная физика рассматривает существование двух видов зарядов, как свойство симметрии. Это противоположные проявления одного и того же качества, как понятия «правый» и «левый». Наша Вселенная представляет собой хорошо уравновешенную смесь положительных и отрицательных зарядов, что не удивительно из-за взаимодействия зарядов.

2. Продолжим разговор о взаимодействии зарядов. Если два небольших заряда А и В отталкиваются и заряд А притягивает третий заряд С, то заряд В тоже притянет заряд С. Иными словами, всегда одноименные заряды отталкиваются друг от друга, а разноименные притягиваются. Количественный закон, устанавливающий меру взаимодействия между заряженными телами малых размеров - так называемыми точечными зарядами, был установлен в 1785 г. Кулоном в ходе тщательных экспериментов. Кулон использовал крутильные весы, похожие на те, которые Кавендиш использовал для определения гравитационной постоянной. В результате опытов Кулон установил, что сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними. Направлена эта сила по прямой соединяющей заряженные тела.

  (1-1)

В системе СИ коэффициент пропорциональности k, входящий в закон Кулона, записывают в виде . Величина  имеет название электрическая постоянная, иногда её называют диэлектрическая проницаемость вакуума, но это последнее название на самом деле не имеет физического смысла и мы им пользоваться не будем. = 8,85×10-12 Ф/м. Здесь буквой Ф обозначена физическая величина Фарад, являющаяся единицей ёмкости в системе СИ, о чём у нас впереди еще будет идти речь.

3. Разговор о третьем свойстве электрического заряда мы предварим таким мысленным экспериментом. Возьмём два одинаковых металлических шарика. Одному из них сообщим заряд q, а другой оставим незаряженным. Приведем шарики в соприкосновение. Заряд распределится поровну между этими шариками. На каждом будет заряд q/2. Уберем заряд со второго шарика и вновь приведем их в соприкосновение. Теперь на каждом шарике будет заряд q/4. Будем продолжать операцию деления заряда. На каждом шарике остаются заряды q/8, q/16, q/32, q/64 и т.д. Вопрос заключается в том, сможем ли мы продолжать эту операцию как угодно долго, деля заряд на сколь угодно малые части, или есть предел такому делению заряда? Оказалось, что такой предел есть. Физики установили это экспериментально, о чем мы будем еще говорить в дальнейшем. Самым маленьким электрическим зарядом является заряд по модулю равный заряду электрона е=1,6×10-19 Кл. Этот заряд принято называть элементарным электри­ческим зарядом. Когда на одном из наших шариков останется такой заряд, после прикосновения к нему второго незаряженного шарика заряд е уже не разделится на части, а останется на первом шарике или перейдет на второй, но целиком. Почему самый маленький заряд равен 1,6×10-19 Кл современная физика не знает. Можно лишь отметить, что все элементарные частицы, если они заряженные, имеют именно такой заряд положительный или отрицательный.

Последнее время физики ввели в обиход новые элементарные частицы - кварки. Кваркам приписывают дробные электрические заряды +2/3 е и -1/3 е. Однако с введением кварков представление о дискретности электрического заряда не снимается, а переносится на другой уровень.

Следует сказать, что в обычных случаях с дискретностью заряда сталкиваться почти не приходится, т.к. величины зарядов, с которыми прихо­дит­ся иметь дело, в тысячи, а зачастую и миллионы раз превосходят величину элементарного заряда.

4. Четвертое свойство электрического заряда – закон его сохранения. Полный заряд изолированной системы представляет собой величину, которая никогда не изменяется. Под изолированной понимают систему, через границу которой не переносится вещество. Это свойство заряда кажется естественным, но дело в том, что оно выполняется как на макро -, так и на микро уровне. Под действием электромагнитного излучения могут возникать электрические заряды, но возникают они всегда парами – положительный и отрицательный, причем заряды их по модулю всегда в точности равны. Сейчас самое время обсудить вопрос о том, как наэлектризовать тело, т.е. создать на нем электрический заряд. Самый простой способ сделать это – перенести на тело уже имеющийся где-то заряд. Но если не хочется его тратить, как поступить? Есть два способа разделения электрических зарядов.

Дело в том, что в любом теле имеются положительные и отрицательные заряды, причем в равных количествах, да еще и равномерно распределенные по этим телам. Именно такие тела называют нейтральными. Если тело является диэлектриком, т.е. очень плохо проводит электрический ток, то наэлектризовать его проще всего в процессе трения. Например, стеклянную палочку можно потереть о кожу. В процессе этого трения отдельные участки стекла и кожи располагаются настолько близко, что электроны получают способность покинуть стекло (на стекле они слабо закреплены) и перейти на кожу. Кожа заряжается отрицательно, а стекло, на котором теперь не хватает отрицательных зарядов, заряжается положительно. Разумеется, в процессе электризации трением не рождаются новые заряды. Они только переходят с одного тела на другое.

Вторым способом электризации является электризация через влияние, электростатическая индукция, как ее часто называют. Через влияние легче всего наэлектризовать проводник. Посмотрим, как это происходит. Поднесем к нейтраль­ному провод­нику положительно заряженное тело, не прикасаясь к нему. Электроны, которые имеются в нашем теле и могут по нему свободно переме­щать­ся, притягиваются к положительному заряду и собираются в той части тела, которая обращена к положительному заряду. Эта часть нашего тела заряжается отрицательно, а удаленная от положительного заряда часть тела, из которой эти электроны ушли, заряжается положительно. Стоит убрать положительный заряд, электроны вернутся на свои места, и наше тело вновь станет нейтральным. Небольшое усложнение эксперимента позволяет сохранить заряды, полученные в процессе электризации через влияние. Для этого электризуемое тело следует предварительно разрезать на части. А и В. Сложив обе части вместе, следует произвести электризацию через влияние, а затем, не убирая положительный заряд, надо раздвинуть части А и В нашего тела.

Теперь с положительным зарядом можно де­лать всё, что угодно. Он сохранён и не из­ме­нил­ся, а тела А и В заряжены соответ­ст­венно отрицательно и положительно, т.к. меж­ду частями А и В отсутствует тот мос­тик, по которому электроны могли бы вер­нуть­ся на свои места.

Как легко видеть, и в случае электростатической индукции выполняется закон сохранения электрического заряда. В процессе электризации через влияние заряды только перемещаются между телами или их частями.

Явление электростатической индукции используется в электроста­тических машинах, предназначенных для непрерывного получения зарядов.

Перед тем как продолжить разговор о свойствах электрических зарядов остановимся на одном чисто техническом, но необходимом при изучении электростатики, вопросе.

Рис. 2

 
Как измерять электрический заряд? Проще всего это делать с помощью электроскопа. Электроскоп представляет собой (рис.2) неподвижный металлический стержень, заканчивающийся в верхней части металлическим шариком. К этому стержню шарнирно прикреплён второй стержень который может легко поворачиваться относительно первого. При сообщении заряда шарику оба стержня заряжаются одноименно. Стремясь оттолкнуться от неподвижного стержня, подвижный поворачивается на угол a и чем больше заряд сообщили электроскопу, тем больше этот угол a. Разумеется, электроскоп одинаково реагирует на положительные и отрицательные заряды. Поэтому с его помощью можно обнаруживать электрический заряд, оценивать его величину, но нельзя без дополни­тельных экспериментов выяснить знак заряда.

5. Вернемся к свойствам электрических зарядов. Оказывается, что величина электрического заряда не зависит от системы отсчета, в которой он измеряется. Как говорят физики, заряд является релятивистки инвариантным. Его величина не зависит от того, движется он или покоится. Все эти свойства электрических за­ря­дов имеют далеко идущие последствия, о которых в дальнейшем и пойдет речь

На главную