Лекции по физике

Ядерная энергетика
Ядерный топливный цикл
Реактор"Феникс"
Оружейный уран и плутоний
Добыча урановой руды
Обогащение урана
Атомная бома «Малыш»
Радионуклиды
Транспортировка радиоактивных веществ
Твэлы энергетических реакторов
Радиохимические заводы России
Курсовой проект по дисциплине
"Детали машин"
Технические требования на чертеже
редуктора
Выбор параметров и расчёт цилиндрических
зубчатых передач
Расчёт зубьев червячного колеса на
выносливость
Пример выполнения курсового проекта
Расчет резьбовых соединений
Зубчатые передачи
Методы повышения износостойкости
деталей машин
Червячные передачи
В зацеплении Новикова
Повреждение поверхности зубьев
Проверочный расчет на выносливость
при изгибе
Приводные ремни и область их применения
Проектирование новой машины
Проектный расчет валов
Муфты продольно-разъемные
Классификация приводных муфт
Лекции по физике
Динамика твердого тела
Вынужденные колебания и волны
Основы термодинамики
Диэлектрики
Получение переменного тока
Оптика

Фотоэлектрический эффект

Диэлектрики.

Электрический диполь.

 В проводниках электрические заряды свободны, т.е. они могут перемещаться по все-му проводнику. Диэлектрики же характеризуются прежде всего тем, что в них нет свобод-ных зарядов, и они не могут проводить электрический ток. В этом классе веществ заряды находятся в связанном состоянии, однако, центры распределения положительного и отрицательного зарядов, вообще говоря, могут не совпадать. Диэлектрики, в которых такое несов-падение имеет место, называются полярными. Система, состоящая из двух равных по величине, но противоположных по знаку зарядов, находящихся на расстоянии l друг от друга, называется электрическим диполем. Для описания свойств диполя вводится так на-

pic12

Рис.12. Поле диполя.

зываемый дипольный момент р = ql, где l – вектор, проведенный из центра отрицательного заряда к центру положительного. Хотя в целом диполь нейтрален, тем не менее несовпадение центров положительного и отрицательного зарядов приводит к тому, что вокруг диполя образуется электрическое поле. Его можно вычислить по принципу суперпозиции. Наиболее просты расчеты для двух случаев: вычисления поля вдоль оси диполя и для точки, находящейся на перпендикуляре, восстановленным из середины l. Пусть точка А, где требуется найти поле диполя, отстоит от положительного заряда на расстояние х. Тогда напряженность поля от этого заряда в точке А равна:

 

Основы теории тепломассообмена Обмен внутренней энергией между телами (или частями одного тела), имеющими различную температуру, называется теплообменом.

а от отрицательного q 

Общее поле Е0 двух зарядов равно (см. рис.12)

  -  =

Для расстояний х>> l выражение для Е0 упрощается: (l+x)» x и

 .

 Для вычисления напряженности в точке В достаточно вспомнить, что меньшая диагональ ЕS ромба (см рис12) со стороной Е+ равна ЕS =2Е+сosg .Кроме того, из рис.12 следует, что
; и

 ».

 Поскольку величина Е непрерывна, то при переходе от точки А к точке В значение Е должно меняться постепенно, и для произвольной точки можно показать, что

 

 Е0 = ,

где N – некий поправочный коэффициент, меняющийся от 1 до 2 при изменении положения точки. Точный расчет показывает, что N =, где  - угол между направлением радиуса- вектора точки и осью диполя. В рамках нашего курса этот расчет проводиться не будет.

Постоянный ток. Известно, что электрический ток – это направленное движение электрических заря-дов. Если количество зарядов, проходящее через заданную площадь в единицу времени не меняется с течением времени, то такой ток называют постоянным. Ясно, что движение мо-жет быть направленным только под влиянием внешних электрических сил.

Основы зонной теории. До сих пор развитие наших представлений об электричестве происходило достаточно последовательно с использованием довольно простых моделей. Лишь в какой-то момент было стыдливо использовано понятие носителей с зарядом q0 , хотя тут же оговаривалось, что в действительности надо рассматривать электроны, которые ответственны за проводимость металлов. Однако электроны являются довольно своеобразным микроско-пическими объектами, которые плохо подчиняются законам классической механики

Постоянное магнитное поле. Закон Ампера.

Поле прямого тока и витка с током. В качестве примеров расчета значений вектора магнитной индукции вычислим поле прямого тока и в центре круглого витка с током.

Силы, действующие в магнитном поле. Взаимодействие прямых проводников. Вообще говоря, силу действия на проводник с током, помещенный в магнитное пол, можно вычислить пользуясь законом Ампера, который был сформулирован на прошлой лекции. Однако для упрощения математических выкладок предположим, что величина поля определена заранее. Пусть это поле однородное, т.е. его значение одинаково во всех точках рассматриваемого пространства

Электромагнитная индукция. Из школьного курса физики известно, что при изменении магнитного поля, пронизы-вающего некую поверхность, ограниченную замкнутым проводящим контуром, в этом контуре возникает ЭДС, равная с обратным знаком скорости изменения магнитного потока.

Магнитное поле в веществе. Модель молекулярных токов. Под действием магнитнго поля все тела приобретают магнитные свойства – в веществе появляются собственные магнитные поля так, что теперь поле внутри вещества складывается из внешнего поля и собственного. В этом смысле принято говорить, что все тела являются магнетиками. Простейшее объяснение проявления магнетизма связано с гипотезой молекулярных токов, высказанной еще в начале XIX века Ампером. Согласно этой гипотезе в веществе циркулируют микроскопические замкнутые токи молекулярные токи

 Механизмы поляризации.

 Кроме полярных диэлектриков существуют вещества, в которых центры положитель-ных и отрицательных зарядов совпадают друг с другом в отсутствии внешнего поля.

Такие вещества называют неполярными диэлектриками. Однако, под действием внеш-него поля у них наблюдается небольшое смещение зарядов. Молекулы диэлектрика как бы раздвигаются: заряды в ней смещаются в разные стороны, и образуются электрические диполи. В полярных и неполярных диэлектриках внешнее электрическое поле оказывает

pic13

Рис.13. Ориентирующее

действие на диполь внеш-него поля.

ориентирующее действие на каждый диполь. Как следует из рис.13, возникает вращающий момент, под действием кото-рого все диполи стремятся выстроиться вдоль направления поля.Однако этому стремлению противодействуют различные причины: внутренние силы, действующие между молекулами, тепловое движение молекул и т.п. Поэтому возникает некоторая преимущественная пространственная ориентация диполей, степень которой характеризуется вектором поляризации, определяемым как суммарный дипольный момент единицы объема, т.е.

 Р =;

для большинства диэлектриков эта величина оказывается незначительной, и ее можно считать пропорциональной напряженности внешнего поля Р = ke0 Е. Величина k (каппа) на-зывается диэлектрической восприимчивостью. Разбиение коэффициента пропорцио-нальности на два сомножителя kи e0 связано с требованиями размерности в системе СИ.

Теорема о поляризационных зарядах.

pic14

Рис.14.Вычисление поляризационно-го заряда.

Рассмотрим некоторую область внутри диэлек-трика, ограниченную поверхностью S (см.рис.14).

При поляризации происходит смещение положи-тельных зарядов в направлении напряженности и отрицательных – в противоположном. Как видно из рис.14, через те участки поверхности, где на-пряженность направлена внутрь поверхности, часть отрицательных зарядов покинет рассма-триваемую область, а через участки, где напря-женность направлена наружу, в область войдет отрицательный заряд. Если вошедший и вышед-ший заряды не равны друг другу, то область при-

оретет поляризационный заряд Qп. Для участка поверхности DS (правая часть рис.14) через DS войдут отрицательные заряды тех и только тех молекул, которые находятся в параллелепипеде с площадью основания DS и высотой lcosa, где l – величина возможного смещения зарядов в молекуле, а a - угол между внешней нормалью к поверхности и вектором поляризации. Объем параллелепипеда равен DS lcosa, следовательно в нем находится n0DS lcosa молекул (n0 –концентрация молекул). При этом левому основанию параллелепипеда должна соответствовать внешняя нормаль, направлен-ная налево (угол a - тупой), а для правого основания - угол a - острый. Через левое основа-ние выходит, а через правое – входит отрицательный заряд. Поэтому и для левого и для правого оснований появится знак минус, т.е. D Qп = - q n0DS lcosa ( q- заряд каждой моле-кулы). Учитывая, что q n0 l = Р0 – величина вектора пояризации и Р0 cosa=Рn , получим: D Qп = - Рn DS.

  Интегрируя это выражение по всей замкнутой поверхности S, имеем:

 .

Полученная формула, вообще говоря, спаведлива для неоднородного диэлектрика. Для однородного же поляризационные заряды могут возникать только на поверхности, причем поверхностная плотность зарядов s = D Qп /DS = Pn . Действительно, подставляя в послед-нее выражение значение Pn =e0 kEn , нетрудно получить, что

 = - dS ; но по теореме Гаусса = и

= -; при k> 0 , это может выполняться лишь при = 0.

Вектор электрического смещения.

 Из изложенного ясно, что в диэлектриках кроме внешнего поля существует еще и соб-ственное (внутреннее) поле, поэтому можно ожидать, что Еполн = Есвоб + Епол . Однако, принцип суперпозиции в общем случае здесь не пригоден, т.к. он справедлив лишь для определенно заданного распределения зарядов, в то время как распределение зарядов в диэлектрике само определяется искомым электрическим полем. Поэтому каждое из слагаемых должно быть определено из каких-то других соображений.

 Рассмотрим замкнутую поверхность, внутри которой есть свободные Qс и поляриза-ционные Qп заряды. Тогда теорема Гаусса принимает следующий вид: 

 .

Заменяя величину Qп согласно теореме о поляризационных зарядах, можно найти:

 .

Домножим обе части последнего уравнения на e0 и перенесем интеграл из правой части в левую. Получаем, что

 .

Выражение, стоящее в круглых скобках под знаком интеграла, представляет собой новый вектор D =e0 E + P, называемый вектором электрического смещения или вектором электрической индукции. Его можно представить так:

 ,

где (1+k) = e называют относительной диэлектрической проницаемостью вещества. Тогда D = ee0E.

Для вектора электрического смещения теорема Гаусса такова.

На главную