Лекции по физике

Ядерная энергетика
Ядерный топливный цикл
Реактор"Феникс"
Оружейный уран и плутоний
Добыча урановой руды
Обогащение урана
Атомная бома «Малыш»
Радионуклиды
Транспортировка радиоактивных веществ
Твэлы энергетических реакторов
Радиохимические заводы России
Курсовой проект по дисциплине
"Детали машин"
Технические требования на чертеже
редуктора
Выбор параметров и расчёт цилиндрических
зубчатых передач
Расчёт зубьев червячного колеса на
выносливость
Пример выполнения курсового проекта
Расчет резьбовых соединений
Зубчатые передачи
Методы повышения износостойкости
деталей машин
Червячные передачи
В зацеплении Новикова
Повреждение поверхности зубьев
Проверочный расчет на выносливость
при изгибе
Приводные ремни и область их применения
Проектирование новой машины
Проектный расчет валов
Муфты продольно-разъемные
Классификация приводных муфт
Лекции по физике
Динамика твердого тела
Вынужденные колебания и волны
Основы термодинамики
Диэлектрики
Получение переменного тока
Оптика

Фотоэлектрический эффект

Постоянный ток.

Основные определения.

 Известно, что электрический ток – это направленное движение электрических заря-дов. Если количество зарядов, проходящее через заданную площадь в единицу времени не меняется с течением времени, то такой ток называют постоянным. Ясно, что движение мо-жет быть направленным только под влиянием внешних электрических сил. Для того, чтобы ток оставался постоянным с течением времени, электрическая цепь, т.е. ряд проводников, соединенных параллельно и последовательно друг другу, должна быть замкнутой.

 Отсюда следует, что силы не могут быть электростатическими, т.к. работа этих сил по замкнутому контуру всегда равна нулю. Обычно эти силы называют сторонними, подчеркивая их неэлектростатическое происхождение. Сила, отнесенная к величине пере-мещаемого заряда, по аналогии с электростатикой, называется напряженностью, а работа по перемещению единичного положительного заряда на каком-либо участке получила назва-ние электродвижущей силы. Однако обычно принято говорить об электродвижущей силе источника тока E, понимая под этим работу, соверщаемую источником во всей цепи. Поскольку ЭДС – это работа, то между нею и напряженностью сторонних сил остается справедливым соотношение, полученное в электростатике4:

 E =.

 При разомкнутой цепи сторонние силы источника так перераспределяют заряды, что создаваемое ими поле компенсирует действие сторонних сил внутри источника. При замк-нутой цепи заряды рапределяются и вдоль проводников внешней цепи, создавая поле вну-три их.

 Если на каком- либо участке цепи действуют сторонние и электростатические силы, то работа по перемещению единичного положительногозаряда будет складываться из работ каждой из этих сил по отдельности. Величину общей работы принято называть напряже-нием. Если понятие “участок” распространить на всю цепь, то очевидно, что тогда общая работа равна E.

Закон Ома.

 Для выяснения закономерностей постоянного тока обратимся к упрощенной микро-скопической картине. Рассмотрим отдельный заряд величиной q 0 , являющийся одним из носителей тока в проводнике ( для металлов q0 = -е, где е – заряд электрона). В силу теплового движения каждый заряд движется хаотически, а под действием сторонних сил он приобретает еще и направленное движение. При хаотическом движении заряд постоянно сталкивается с ионами, масса и размеры которых значительно больше аналогичных пара-метров носителя. Ионы также участвуют в тепловом движении, но это, в основном, коле-бательные движения, амплитуда которых увеличивается с температурой. Носители, стал-киваясь с ионами, на какое – то мгновение как бы прлипают к последним (разноименные заряды стремятся притянуться друг к другу). На языке механики это означает, что носители испытывают неупругие столкновение с ионами так, что новый путь они начинают с нулевой скоростью направленного движения. Пусть время между двумя последовательными соударениями равно t. Тогда под действием напряженности носитель за это время приобретет скорость u =at. Ускорение а =F/m = q0 E/m; m – масса носителя. Вводя понятие плотности тока j , которое определяется как количество зарядов, проходящих через единичную площадку, перпендикулярную вектору скорости, можно записать:

 где  .

Величина l, определенная таким способом, называется электропроводностью материала, а обратная ей r=1/l -удельным электросопротивлением. Нетрудно заметить, что плотность тока – вектор, направление которого совпадает с направлением вектора скорости. Соотношение j =lE носит название закона Ома в дифференциальной (векторной) форме.

Если однородный проводник имеет длину l и площадь поперечного сечения S, то закон Ома для такого проводника может быть записан в несколько ином виде. Для этого умножим обе части соотношения jr =E на произведение lS и учтем, что для однородного проводника поле внутри его везде одинаково, т.е. однородно, и El =U – разность потенциалов на концах про-водника. Тогда получим:

 jSrl =El S.

Введем понятие силы тока I = (jS) и обозначим rl/ S =R, теперь наше соотношение приобретает обычный вид: U =IR, где U – напряжение на концах проводника, а I –сила тока.

Сила тока – скалярное произведение плотности тока и площади, которой в этом случае при-писываются векторные свойства ( направление вектора определяется как и прежде направ-лением внешней нормали к площади). Величина R называется сопротивлением проводника.

Для соединения нескольких проводников величина общего сопротивления R0 находится по известным правилам: для последовательного соединения R0 =S Ri , а для параллельного

 .

Если на рассматриваемом участке имеется источник тока с ЭДС E , как уже отмечалось, об-щее напряжение складывается из разности потенциалов и ЭДС, т.е.

 U =IR +E .

Этот вариант записи соотношения между током и напряжением носит название закона Ома для участка цепи, содержащей ЭДС. Здесь важно учитывать правило знаков: считается, что положительный ток проходит от положительного полюса элемента к отрицательному; при заданном направлении тока через рассматриваемый участок, ЭДС считается положи-тельной, если она создает ток в этом же направлении и отрицательной – если в противопо-ложном. Для замкнутой цепи очевидно, что концы проводника замыкаются сами на себя и U=0. Тогда закон Ома примет вид

 E = (R + r)I,

где r – внутреннее сопротивление источника тока.

Закон Джоуля – Ленца.

 При выводе дифференциального закона Ома предполагалось, что носители тока в момент столкновения с ионами как бы прилипают на мгновение к последним, т.е. носители полностью теряют свою энергию, которую онм приобрели под действием ускоряющего поля. Эта энергия передается ионам и переходит в энергию их хаотических колебаний, т.е. в теплоту.

 За время свободного пробега отдельный носитель приобретает энергию, равную ра-боте, которая совершается за счет электрического поля: w = q0El Dl. Т.к. общее количество зарядов, проходящее в единицу времени через поверхность единичной площади, опреде-ляется плотностью тока j , то для Dl = 1 количество энергии, переходящей в теплоту, равно DW =jE или

 DW = lЕ2.

Последнее выражение носит наименование дифференциального закона Джоуля-Ленца.

Для проводника, имеющего длину l и площадь S, оно преоразуется к известному виду, достаточно лишь обе части этого выражения умножить на объем V =Sl .

 DWV =W0 =,

где в преобразованиях использован закон Ома для участка цепи. Полученная формула описывает закон Джоуля-Ленца в интегральном виде.

Выделяющаяся теплота имеет смысл полезной лишь в нагревательных приборах; во всех других случаях это – потери энергии, снижение этих потерь составляет одну из важнейших задач электротехники. Эта теплота образуется зя счет энергии сторонних сил.

 Для закнутой цепи полная работа по перемещению единичного положительного заряда по определению равна E, значит полная мощность, которую может развить источник, равна E I. Величина совершенной работы за время t определится как A =E It.

На главную