Лекции по физике

Ядерная энергетика
Ядерный топливный цикл
Реактор"Феникс"
Оружейный уран и плутоний
Добыча урановой руды
Обогащение урана
Атомная бома «Малыш»
Радионуклиды
Транспортировка радиоактивных веществ
Твэлы энергетических реакторов
Радиохимические заводы России
Курсовой проект по дисциплине
"Детали машин"
Технические требования на чертеже
редуктора
Выбор параметров и расчёт цилиндрических
зубчатых передач
Расчёт зубьев червячного колеса на
выносливость
Пример выполнения курсового проекта
Расчет резьбовых соединений
Зубчатые передачи
Методы повышения износостойкости
деталей машин
Червячные передачи
В зацеплении Новикова
Повреждение поверхности зубьев
Проверочный расчет на выносливость
при изгибе
Приводные ремни и область их применения
Проектирование новой машины
Проектный расчет валов
Муфты продольно-разъемные
Классификация приводных муфт
Лекции по физике
Динамика твердого тела
Вынужденные колебания и волны
Основы термодинамики
Диэлектрики
Получение переменного тока
Оптика

Фотоэлектрический эффект

 О П Т И К А

Представления о свете.

Развитие представлений о свете.

 Хотя попытки дать объяснения природы света были сделаны еще в древности (Евклид и Лукреций Кар), первая стройная теория света была разработа И.Ньютоном в конце семнадцатого века. Ньютон считал, что свет – это поток мельчайших частиц – корпускул, поэтому его теория получила название корпускулярной. Одновременно с ним Гук и Гюйгенс развивали волновую теорию, однако она не получила широкого признания отчасти изза высокого авторитета Ньютона и отчасти изза недостатков самой теории. которая представляла свет как упругие колебания среды Ньютон установил, что свет в представлениях волновой теории должен быть поперечными колебаниями, что казалось маловероятным, учитывая эмпирические факты распространение света в воздухе и,особенно, в межзвездном пространстве.Лишь позднее была предложена гипотеза о существовании особой среды,заполняющей всю Вселенную, эфира, упругие свойства которого обеспечивали требуемую скорость распространения света.Успехи волновой теории связаны с работами Юнга, Френеля и Пуассона, которые были выполнены в первой половине XIX века. Работы этих исследователей позволили объяснить такие явления как интерференция и дифракция света. Д.Максвелл установил, что свет – это электромагнитные волны. В тот момент, когда волновая теория стала общепризнанной, были установлены закономерности излучения света атомами и открыт фотоэффект. Эти факты противоречили волновой теории. Позднее была развита новая теория – дуалистическая, где свету приписывались и волновые и корпускулярные свойства. Луи де Бройль высказал гипотезу о всеобщем дуализме материи: каждая частица обладает волновыми свойствами, и каждой волне могут быть приписаны определенная масса и импульс. Свет – лишь пример проявления дуализма в природе. В нашем курсе мы будем рассматривать преимущественно волновые явления.

Дифракция света. Метод зон Френеля. Дифракией называется когерентное рассеяние света на объектах, геометрические размеры которых сранимы с длиной световой волны. Наблюдающаяся дифракционная картина является результатом интерференции вторичных источников, образующихся на поверхности объекта.

Дифракция Фраунгофера. Этот вид дифракции наблюдается в параллельных лучах, когда волновой фронт становится плоским, а зоны Френеля принимают вид узких прямоугольных полосок

Поляризация света. Взаимодествие света с веществом. Явление поляризации. Обычно считается, чтопонятие поляризации связано с сохранением неизменной ориентации плоскости колебаний. Говорить о поляризации имеет смысл только для поперечных колебаний.

Поглощение света. При прохождении света через вещество часть энергии световой волны поглощается, переходя во внутреннюю энергию вещества

Законы теплового излучения. Закон Кирхгофа. Обычно тепловым излучением считают электромагнитные волны, длина волны кото­рых лежит в интервале от одного до нескольких десятков микрон (1 мкм = 10 6 м). Эти волны, также как и свет, испускаются атомами в виде отдельных цугов, начальная фаза и поляриза­ция которых изменяются хаотически от одного элементарного акта испускания к другому. Поэтому тепловое излучение является некогерентным,и его закономерности оказываются спра­ведливыми для всего диапазона электромагнитных волн.

Строение вещества. Теория атома Бора. Изучая прохождение ачастиц (ядер атомов гелия) через тонкую золотую фольгу, анг­лийский ученый Э.Резерфорд обнаружил, что большинство этих частиц свободно проходит через многочисленные слои атомов, и вещество в этих экспериментах ведет себя как крупное сито.свободно пропускающее довольно тяжелые заряженные частицы

Строение ядра атома. Согласно современным представлениям в состав ядра атома входят протоны и нейтроны. Размеры ядра очень малы – всего10'5 м. Частицы удерживаются в столь малых размерах с помощью особых ядерных сил. Эти силы характеризуются тем, что они действуют только на очень малых расстояниях.

Предмет оптики. Оптика раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом.

Применение интерференции. Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны l0, и поэтому это явление применяется для измерения длин волн (интерференционная спектроскопия).

Закон Малюса. Допустим, что два кристалла турмалина или 2 поляроида поставлены друг за другом так, что их оси ОА1 и ОА2 образуют между собой некоторый угол.

Поглощение света. Поглощением света называется явление поглощения энергии световой волны при её распространении в веществе.

Понятие о тепловом излучении. Тепловое излучение это электромагнитное излучение, испускаемое веществом за счет его внутренней энергии. Все остальные виды свечения называются люминесценция.

Законы отражения и преломления света.

 Волновая теория широко использует принцип Гюйгенса: каждая точка среды, до которой дошел волновой фронт, становится источником вторичных колебаний так, что положение волнового фронта в любой последующий промежуток времени находится как огибающая этих вторичных возбуждений. Отметим, что волновым фронтом называется поверхность, соединяющая точки,колебания в которых имеют одинаковые фазы.

Рис.38. К выводу закона прелом

 ления света.

На рис.38 это изображается линией S. Руководствуясь этим принципом, выведем законы преломления и отражения света.Пусть на границу раздела двух сред падает плоский волновой фронт АВ.В момент, когда его левый край достигнет точки А (см. рис.38), в среде 2 вокруг этой точки начнет образовываться сферическая волна. Правый край фронта подойдет к границе раздела через время t =BD/c, где с – скорость распространения света в среде1. За это время сферическая волна из точки А успеет распространиться на расстояние АС=vt (v –скорость распространения света в среде 2).Из рис.видно,что BAD = a и АDC = b

как углы с взаимно перпендикулярными сторонами. Поэтому можно записать:

 .

Сравнивая эти два выражения, можно заметить, что

 .

  Как уже упоминалось,скорость электромагнитных волн в среде v =c/= c/n .Поэтому отношение синусов можно приравнять к показателю преломления второй среды относительно первой:

 .

  Если свет распространяется в обратном направлении, т.е из среды 2 в среду 1, то закон преломления остается в силе, но теперь n12 – это показатель преломления среды 1 относительно среды 2. Можно заметить, что в этом случае угол преломления становится больше угла падения, но существует предельное значение угла преломления,  т.к. синус не может быть больше единицы. Угол падения, который соответствует этому углу преломления называется предельным. При дальнейшем увеличении угла падения свет не проходит в среду 1, испытывая полное внутреннее отражение.

pic39

Рис.39. К выводу закона отраже

  ния света. 

 Вывод закона отражения света производится анало

 гичным способом, с той разницей, что теперь вторичная волна распространяется в той же среде (рис.39). Треугольники D ACD и DABD равны, т.к. сторона AD общая, а АВ = СD =ct, где как и прежде t – время распространения  волнового фронта от точки С до точки D. Из равенства треугольников следует, что 

 CAD = ABD, как углы с взаимно перпендикулярными сторонами, но CAD = a и ABD = g и a=g, т.е. угол падения равен углу отражения.

Явление интерференции.

  Интерференцией называется сложение волн от двух или нескольких источников, когда в результате сложения нарущается принцип суперпозиции интенсивностей. Как следует из прошлых лекций, плотности энергии электрического и магнитного полей пропорциональны квадратамвеличин Е и В, поэтому можно считать, что плотность энергии в электромагнитной волне также пропорциональна квадрату амплитуды волны. Принято считать, что плотность энергии определяет интенсивность световой волны, которую человеческий глаз оценивает как освещенность. При сложении волн должен выполняться принцип суперпозиции энергий каждой из слагаемых волн. Наша повседневная практика дает примеры справедливости этого положения: две лампы дают в два раза больше света, чем одна. Можно показать, однако, что этот принцип выполняется не всегда.

pic40

Рис.40. Сложение коге

рентных колебаний.

 Пусть имеется две плоских волны y1 = A1sin(wt –kx1) и y2 =

 =A2sin(wt –kx2), где х1 и х2 расстояния, которые прошли волны до момента встречи. Для того, чтобы найти сумму колебаний от двух волн в точке встречи, представленных в векторном виде (рис.40). Как видно из рис., по теореме косинусов можно записать

   ,

т.е. результат сложения зависит от разности х2 – х1. При условии k(x2 –x1) =2pn ( n = 0,1,2 и т.д.)

 ,

 а при k(x2 –x1) =(2n1) p

 .

 Очевидно, что при условии А1=А2  или  в зависимости от разности хода x2 –x1. Если учесть, что энергия каждой волны равна А2, суммарная энергия должна равняться 2А2, тогда как результат сложения либо в два раза больше, чем суммарная энергия, либо равен нулю, т.е. кажется, что не выполняется закон сохранения энергии. Колебания, для которых подобные результаты имеют место, называются когерентными. Если принцип суперпозиции выполняется, то источники называют некогерентными. Для того, чтобы волны давали когерентные колебания, необходимо выполнение трех условий:

  1.должны иметь одинаковую частоту,

 2. разность фаз колебаний должна быть постоянной хотя бы на время волны наблюдений,

 3. колебания каждой из суммируемых волн должны лежать в одной плоскости.

Практическое получение когерентных колебаний связано с определенными трудностями. Необходимо иметь в виду, что световые волны получаются при излучении атомов, когда электорны переходят с одного энергетического уровня на другой. Время излучения крайне незначительно и составляет около 10 –8 сек. Новый кат излучения происходит с другой начальной фазой, которая раз от раза изменяется случайным образом. На языке корпускуляр

pic41

Рис.41. Схема получения

 когерентных волн.

ных представлений такая порция излучения называется квантом, а в волновой теории ее называют цугом. Для получения когерентных волн необходимо, чтобы они происходили из одного цуга. Это можно сделать лишь путем его деления (см. рис.41). Для этих целей используются специальные приспособления: билинзы Бийе, бипризмы и бизеркала Френеля и др. (рис.42). Во всех случаях явление  интерференции возможно,

если максимальная разность хода не превышает длину цуга L = ct, где t = 10 –8 сек – время излучения цуга,т.е. L=3м.

pic42

Рис.42. Интерференционные схемы: а)бипризма Френеля, б)билинза Френеля.

«Раздвоение» источника достигается либо преломлением в призме, либо отражением в двух зеркалах. Угол «разворота» зеркал и преломляющий угол призмы близки к 1800 для того, чтобы достичь наилучшей видимости картины интерференции.

 Как было показано, амплитуда суммарных колебаний определяется разностью хода интерферирующих волн или разностью фаз складывающихся колебаний. Если разность фаз Dj изменяется случайным образом, то среднее значение cosDj за время наблюдения равно нулю, и мы видим обыкновенное сложение интенсивностей. Если же источники когерентны, то при условии k(x2 –x1) = 2pn  колебания дадут максимум суммарной амплитуды, а при k(x2 –x1) = (2n1)p минимум. Учитывая, что k = 2p/l , ( l длина волны ) условия максимума и минимума интенсивностей можно записать так:

  (x2 –x1) = 2nl/2 для максимума и

  (x2 –x1) = (2n1)l/2 для минимума.

  Это значит, что если разность хода интерферирующих волн равна четному числу полуволн, то получается максимум, а если нечетному – минимум интенсивности. Нарушение закона сохранения энергии при этом не происходит. Она лишь перераспределяется – в max – больше, а в min меньше, но средняя энергия остается неизменной. Глаз воспринимает такое перераспределение как чередование темных и светлых полос, контрастность которых определяется соотношением интенсивностей интерферирующих источников.

Полосы равной толщины.

 Наиболее часто в повседневной жизни явление интерференции проявляется в так называемых полосах равной толщины, которые получаются при отражении света от тонких

pic43

Рис.43. Интерференция в тон

  ких пленках.

пленок. Пусть имеется тонкая пленка переменной толщины (рис.43), на которую падают параллельные лучи света. Выберем два луча, один из которых отражается от верхней поверхности пленки, а другой – от нижней. Разность хода между лучами определяется удвоенной длиной AD и участком ВС. Однако следует иметь в виду, что пленка является более плотной оптической средой, и скорость света в ней меньше. Вследствие этого время, затрачиваемое светом на прохождение пути AD будет больше в n раз, где n – показатель преломления пленки. Поэтому принято говорить об оптической длине пути света, которая равна ADn. Теперь разность оптических путей лучей

1 и 2 D = 2n(AD) – BC +l/2. Величина l/2 добавляется потому, что происходит изменение фазы волны на 180 0, что эквивалентно увеличению пути на l/2.Из рис можно увидить, что AD = DF/cosb;AF = DFtgb;AC = 2AF= =2DFtgb;BC =ACsina = 2DFtgb sina. Согласно закону преломления света sina = nsinb. C учетом этого D= 2nDF/cosb 2DFsinatgb + +l/2 = 2nDF(1 sin2b)/cosb +l/2 = 2DFcosb +l/2.

Если D= (2n1)l/2, то 2DFncosb =nl cоответствует условию минимума освещенности, а D= =nl= 2DFncosb +l/2 – условию максимума.Условия интерференции будут одинаковыми для всех мест, где толщина пленки также одинакова, в связи с чем говорят, что интерференционная картина локализована на поверхности пленки. При наблюдении в белом свете картина усложняется, т.к. для каждого из цветовых компонент белого света условия max и min будут свои. На поверхности пленки будут видны цветные пятна (вспомните пленки бензина и масла на поверхности луж). Частным  случаем полос равной толщины являются

pic44

Рис.44. Схема для наблю

 дения колец Ньютона.

кольца Ньютона. Роль пленки переменной толщины здесь играет воздушная прослойка между собирающей линзой и стеклянной пластинкой (см.рис.44). Т.к. оптическая структура обладает осевой симметрией, наблюдающиеся интерференционные полосы принимают вид концентрических колец. Для толщины прослойки h разность хода между лучами, отраженными от нижней поверхности линзы и от пластинки соответственно равна D =2h +l/2 (l/2) добавляется изза условий отражения. В то же время из рис.44 на основании свойств перпендикуляра. опущенного из вершины прямого угла на гипотенузу, следует:

   ,

где m – номер наблюдаеиого кольца. Пренебрегая малой величиной h2 по сравнению с радиусом линзы R,находим . Для темных колец D = (2m+1)l/2 = 2h + l/2 и 2h =ml. Подставляя это соотношение в формулу для квадрата радиуса кольца, получим:

 .

На главную