Ядерная энергетика Нормы радиационной безопасности Экология тепловой энергетики Фильтры очистки Информационная безопасность Информационные системы

Энергетика

Некоторые зарубежные методы «мокрой»сероочистки

Метод «Хемико»

На рис.3 показана принципиальная схема одной из установок мокрого известнякового метода обессеривания дымовых газов с конечным продуктом - «на выброс». Дымовые газы после котла очищаются от золы в электрофильтре и дымососом направляются в абсорбер, причем перед абсорбером дымовые газы разделяются на два потока: 80% поступает в абсорбер, а 20% по байпасу поступает в газоход после абсорбера. Сделано это для того, чтобы нагреть очищенные газы, так как они охлаждаются в процессе очистки до температуры точки росы.

Рис.3. Схема установки известнякового метода обессеривания дымовых газов:

1 - котел; 2 - электрофильтр; 3 - дымосос; 4 - абсорбер; 5, 10, 13, 15 - насосы; 6 - бункер извести; 7 - емкость для гашения извести; 8 - вода; 9 - емкость для известковой суспензии; 11 - сгуститель; 12 - центрифуга; 14 - отстойник; 16 - дымовая труба

Суспензия известняка готовится в специальной емкости и оттуда подается в нижнюю часть абсорбера, откуда насосом перекачивается в 4 яруса форсунок, расположенных в верхней части абсорбера.. Проходя через орошающую жидкость, двуокись серы вступает в реакцию с известняком:

СаСО3 + SO2 + 1/2 Н2О = СаS03·1/2Н2О+СО2.

Сульфит кальция и непрореагировавший известняк вновь подаются со дна абсорбера в форсунки, а часть этой суспензии откачивается в специальный сгуститель, из которого поступает в центрифуги. Обезвоженный сульфит кальция направляется в отвал. Такие установки работают на нескольких электростанциях США.

По такой схеме работают установки обессеривания газов на Магнитогорском металлургическом комбинате.

В Северной Америке и Западной Европе приток заказов на новые АЭС практически равен нулю. Такое же положение сложилось со строительством новых АЭС и в России. При этом существует значительная потребность в модернизации существующих станций, в том числе и в странах Восточной Европы.

Только в Восточной Азии, в частности в Республике Корея, Китае и Тайване, ощущается действительная заинтересованность в строительстве новых АЭС, но разработка соответствующих проектов требует много времени и часто затягивается по причине возрастающего давления со стороны защитников окружающей среды.

В целом зависимость энергетики ряда стран мира от атомных электростанций весьма значительна. Так, в 1995 г. доля АЭС в общей выработке электроэнергии составила (в %): в Литве — 76,4, Франции — 75,3, Бельгии — 55,8, Швеции — 51.1, Словакии — 49,1, Болгарии — 45,6, Венгрии — 43,7, Словении, Швейцарии, Республике Корея, Испании — в среднем 34,0, Японии — 30,7, ФРГ - 29,3, Великобритании - 25,8, США - 22,0, России -11,4. Себестоимость электроэнергии АЭС на 20% ниже, чем на ТЭС, работающих на угле, и в 2,5 раза ниже, чем работающих на мазуте, а удельные капитальные вложения вдвое выше (в США около 1000 долл. на I кВт). К концу XX в., по некоторым расчетам, доля электроэнергии, вырабатываемой на атомных электростанциях, составит 15%, а к 2020—2030 гг. — 30%, что потребует значительного увеличения добычи урана.

Потребности в уране, согласно расчетам, к 2010 г. достигнут 135 тыс. т, а на весь период до 2010 г. понадобится 1,8 млн. т урана. Запасы урана разделяются на две категории в зависимости от цены на 1 кг концентрата U3O8 — до 66 долл. и от 66 до 110 долл. Для сравнения отметим, что средняя цена, которую потребители уплачивали в 1977 г., по данным долгосрочных контрактов, составляла 38—45 долл. за 1 кг, а максимальная цена в конце 1977 г. доходила до 95 долл. Общие запасы урана в развитых странах Запада и развивающихся странах превышают 4 млн. т; достоверные запасы первой категории — 1650 тыс. и второй — 540 тыс. т; предполагаемые запасы первой категории — 1510 тыс., а второй — 590 тыс. т. Наибольшими запасами обладают США, Канада, ЮАР, Австралия, Франция.

Но этим источники получения уранового концентрата не ограничиваются. Значительные количества урана находятся в отвалах заводов по производству обогащенного урана. Современная технология позволяет довести их до 0,1%, а в перспективе, возможно, снизить почти до нуля (с применением лазерной технологии). Можно считать, что до конца текущего века запасов урана хватит, особенно если учесть возможность широкого использования реакторов-размножителей и применения в качестве атомного топлива плутония. К тому времени можно надеяться на практическое использование термоядерной энергии, источники производства которой — дейтерий, тритий, содержащиеся в морской воде, — велики.


На главную